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Abstract-The competing processes of folding and faulting during shortening of a layered sequence are 
investigated using elastic-plastic models, in order to determine the influence of mechanical stratigraphy on the 
development of fold belts vs thrust belts. The models consist of a strong middle layer and weaker decollement and 
cover layers. The mechanical behaviour of each layer is determined by its plastic hardening modulus h and its 
elastic shear modulus G. With bonded contacts, fold amplification at low shortening strain (relatively large h) is 
greatest for a thin cover layer and a thick decollement layer. At higher shortening strain (h << G), the middle layer 
may reach its peak strength before the other layers, causing it to become relatively weaker in shortening and 
causing fold amplification to be greatest for a thick middle layer. Free-slip contacts between the layers enhance 
folding and fold amplification is greatest if the slip surfaces are roughly equally distributed throughout the 
sequence. A relatively weak decollement layer enhances folding, consistent with the fact that fold belts usually 
include a salt decollement layer. Dominant wavelengths increase with increasing strength contrasts between the 
layers and with increasing thicknesses of the decollement and strong layers. 

INTRODUCTION 

Layered sequences of rock subjected to layer-parallel 
shortening may either fold or fault. Some regions of 
shortening, such as the Idaho-Wyoming-Utah thrust 
belt (Armstrong & Oriel 196.5) and southern Appala- 
chian thrust belt (Rich 1934, Harris & Milici 1977), have 
deformed primarily by faulting. Other regions, such as 
the central Appalachian Plateau (Gwinn 1964), Jura 
(Pierce 1966) and Parry Islands (Harrison & Bally 1988)) 
have deformed primarily by folding. These differing 
styles of deformation may be the result of differing 
mechanical stratigraphy (strengths and thicknesses of 
layers). The stratigraphic sequences within many fold 
and thrust belts consist of a weak decollement layer of 
shale or salt, a strong layer of carbonate rocks, and a 
cover layer of elastic rocks (Woodward & Rutherford 
1989, Goff 1990). The style of deformation is deter- 
mined by both strong and weak layers within the se- 
quence (Woodward & Rutherford 1989). Because salt 
may be l-2 orders of magnitude weaker than other rock 
types, a salt decollement layer at the base of a fold-and- 
thrust belt has a large effect on the deformation and 
geometry of the belt (Davis Kr Engelder 1985). Regions 
dominated by folding are commonly underlain by a layer 
of salt (Pierce 1966, Sherwin 1972, Wiltschko & Chapple 
1977, Harrison & Bally 1988) and the flow of weak 
material into the cores of anticlines may be necessary for 
the development of detachment folds (Wiltschko & 
Chapple 1977). The thickness of the cover layer may also 
determine whether folding or faulting dominates (Willis 
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1894). Slip surfaces within a sequence are also import- 
ant, causing the sequence to behave as a multilayer 
rather than a single layer and thereby enhancing folding 
over faulting (Johnson 1980). 

A three-layer model of a fold or thrust belt, which 
incorporates a dtcollement layer, strong layer and cover 
layer, is presented here in order to investigate the 
influence of mechanical stratigraphy on folding vs fault- 
ing. A similar three-layer model, with viscous material 

properties, was used by Goff (1990) to explain spacing of 
thrust-fault ramps in terms of folding instabilities. 
According to this interpretation, ramp spacings in thrust 
belts are analogous to fold wavelengths (Goff 1990). The 
current analysis is based on the approach of Johnson 
(1980), who studied the folding and faulting of single 
layers and multilayers of elastic-plastic materials. In this 
approach, material response is a competition between 
folding and faulting; loading conditions and material 
properties determine which response occurs. The cur- 
rent study extends the analysis to multilayers of finite 
thickness, instead of layers embedded within infinite 
media, and investigates the effects of layer strengths and 
thicknesses, as well as interlayer slip, on the develop- 
ment of fold belts vs thrust belts. 

ANALYSIS 

This section summarizes the analysis and explains the 
significance of the parameters. The derivations of the 
equations for displacements and stresses are given in the 
Appendix. In the analysis, deformation is separated into 
mean and perturbing parts (Johnson 1980). The mean 
part of the deformation represents uniform shortening, 
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Fig. 1. Schematic stress-strain curves for an elastic-plastic material. 
(a) Relationship between shear stress and shear strain, with slope GN 
(the tangent modulus). The shear strain can be divided into (b) an 
elastic part, whose relationship with shear stress is characterized by 
slope G (the elastic shear modulus) and (c) a plastic part, whose 
relationship with shear stress is characterized by slope h (the plastic 

hardening modulus). 

whereas the perturbing part represents the growth of 
fold instabilities. For an elastic-plastic material, the 
strain can be divided into elastic and plastic components 
(Fig. 1) and the total, elastic and plastic strains are 
characterized by the moduli GN, G and h, respectively. 
GN is the tangent modulus (slope of the shear stress- 
shear strain curve; Fig. la), G is the elastic shear 
modulus (Fig. lb), and h is the plastic hardening modu- 

lus (slope of the shear stress-plastic shear strain curve; 
Fig. lc). GN is related to G and h by 

GN = GhI(G + h). (1) 

In the models, G is assumed to be constant, whereas GN 
and h are decreasing functions of strain. In addition to G 
and h, the other parameter in the analysis is P, the 
differential axial stress, which is defined in equation 
(A2b) and computed by numerical integration of 

dPldcXX = 4G,, 

based on the stress-strain curves. 

(2) 

According to this analysis, folding is possible if a 
perturbation amplifies significantly. If a perturbation 
does not amplify at a shortening strain less than that for 
for which h + 0 (peak strength), then faulting is inter- 
preted to occur. Plane strain is assumed, the material is 
incompressible and there are no density differences 
between the layers. Both elastic and plastic strains are 
assumed to be infinitesimal and the analysis is valid only 
for incipient buckling (Johnson 1980). Thus, this analy- 
sis cannot be used to determine final stresses and strains 
within the layers, but can be used to determine whether 
folding or faulting is most likely. 

Elastic-plastic materials behave anisotropically, with 
GN as the normal modulus and G as the shear modulus 
(equation Al). If G << h then GN-+ G (equation l), so 
that the material behaves as an isotropic elastic material 
with modulus G. On the other hand, if G >> h the 
material behaves as an anisotropic material with modu- 
lus G in shear parallel to x and z and modulus GN in 
shortening or extension parallel to x and z (Fletcher 
1974, Johnson 1980). Because GN decreases with in- 
creasing strain, an elastic-plastic material becomes 
more anisotropic with increasing strain. The forms of the 
governing equations for elastic-plastic materials are 
similar to those for viscous materials (e.g. Fletcher 1974, 
Goff 1990); linear viscous materials are analogous to 
elastic materials (h >> G) and power-law viscous 
materials are analogous to elastic-plastic materials 
(h << G). Elastic-plastic and power-law viscous 
materials display more complex behavior than linear 
elastic or linear viscous materials, because the constitut- 
ive relationships are nonlinear (Smith 1979). 

The three-layer model (Fig. 2) consists of a decolle- 
ment layer (layer 1)) a strong layer (layer 2) and a cover 
layer (layer 3). Each interface between the layers is 
given a small initial sinusoidal perturbation. These per- 
turbations amplify into folds fastest for some dominant 
wavelength that depends on material properties, layer 
thicknesses and boundary conditions. Boundary con- 
ditions are applied at the interface between layers and at 
the top and bottom of the model. Layer interfaces are 
assumed to be either bonded, in which case the displace- 
ments and stresses must match across the interface, or 
free-slip, in which case the shear stress is zero along the 
interface. The top surface of the models is stress-free. 
The bottom surface is a free-slip surface with no vertical 
displacement, which simulates a detachment surface 
overlying a rigid basement. The amplification ratio used 
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Fig. 2. Geometry of the models, showing thicknesses and material 
properties of layers 1 (dCcollement), 2 (strong layer) and 3 (cover). 
The top boundary is a stress-free surface and the bottom boundary has 

zero vertical displacement and zero shear stress. 
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Fig. 3. Experimental stress-strain curves of Barnes Sandstone and 
Green River Shale at 200 MPa confining pressure (from Handin & 
Hager 1957). The slope of the stress-strain curves is equal to 3G, for 

these loading conditions. 

here is the average of the amplitude ratios of the two 
layer interfaces, (A,/A,, + AhlAbo)/2, where an o sub- 
script represents the initial amplitude and A, and Ab are 
defined in Fig. 2. 

For the present study, the material properties h and G 
are the same as those used by Johnson (1980), based on 
experimental deformation (Handin & Hager 1957) of 
Barnes Sandstone (for layer 2) and Green River Shale 
(for layers 1 and 3; Fig. 3). At high shortening strain, 
G :>> h for these materials. Barnes Sandstone reaches 
peak strength at a lower shortening strain (E,, = 0.16) 
than Green River Shale, so that the ‘stronger’ Barnes 
Sandstone is relatively weaker in shortening at high 
strains (GNIlGN2 = 3.47 at E,, = 0.16; Table 1). At 
lower shortening strains, Barnes Sandstone is relatively 
stronger in shortening (GNIIGNZ = 0.50 at E,, = 0.10) as 
well as in shear (G1/Gz = 0.43). Material parameters are 

normalized to GZ, because the relative rather than 
absolute values of the parameters determine the mech- 
anical behavior. 

In the models presented here, the effects of material 
properties and interlayer slip are investigated as func- 
tions of layer thicknesses T1, T2 and T3, which are 
normalized to the total thickness T. For each set of 
models, amplification ratio and dominant wavelength 
are plotted on ternary diagrams of the layer thicknesses, 
which cover all possible combinations of relative thick- 
nesses. Locations on the ternary diagrams are identified 
using the coordinates ( T1, T2, TX). In two sets of models, 
the properties of Barnes Sandstone are used for layer 2 
and those of Green River Shale are used for the weaker 
layers 1 and 3 (Table 1). A third set of models investi- 
gates the effects of a relatively weaker decollement layer 
by using values of hllGZ and P,IG2 that are lower by a 
factor of 10, which approximates a layer with the mech- 
anical properties of salt. The amplification ratios for 
each set of models are determined for a relatively low 
shortening strain (CXX = 0.10) and for a shortening strain 
near the peak strength of Barnes Sandstone (E,, = 0.16). 

RESULTS 

Model set I has bonded contacts and the material 
properties of Barnes Sandstone for layer 2 and those of 
Green River Shale for layers 1 and 3 (Table 1). At 
shortening strain E,, = 0.10, fold amplification is highest 
for a thin cover layer and approximately equal thick- 
nesses of strong and decollement layers (0.45T, 0.50T, 
0.0579. However, fold amplification is low for all combi- 
nations of relative thicknesses, reaching a maximum of 
0.5 (Fig. 4a). A thin or nonexistent cover layer enhances 
folding because the presence of the stress-free upper 
surface is equivalent to having an infinitely weak me- 
dium above that surface, making the cover layer un- 
necessary as a weak upper medium. At shortening strain 
E,, = 0.16, the fold amplification is large (>lOO) for a 
thick layer 2 and thin decollement and cover layers (Fig. 
4b), because layer 2 at this shortening strain has become 
relatively weak in shortening. The dominant wavelength 
at E,x = 0.16 increases with increasing thicknesses of 
both the decollement and strong layers (Fig. 4c) to a 
maximum of 2.9T at (0.90T, O.O5T, 0.05T). This maxi- 
mum dominant wavelength increases for increasing 
strength contrasts between the layers, to 3.4T if h,lGz, 
h3/G2, P,IG, and P,IG, are reduced by a factor of 10 
and 4.5T if hllG2, h31Gz, P, lGz and P31Gz are reduced 
by a factor of 100. 

Model set II has free-slip contacts and the same 
material properties as model set I (Table 1). With free- 
slip contacts between the layers, fold amplification is 
greatest if the three layers have roughly the same thick- 
ness. For example, at shortening strain E,, = 0.10, the 
fold amplification ratio (Fig. 5a) reaches a maximum at 
(0.50T,0.25T,0.25T). At shortening strain E,, = 0.16, 
the fold amplification ratio is high for thick layers 1 and 2 
and thin layer 3 (Fig. 5b). The range of relative layer 
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Table 1. Material properties and types of contacts used in the models. Cl/G, and G,/G, are 0.433 for all 
models. The material properties in the first two model sets are based on the experimental stress-strain 
relations in Fig. 3. Layers 1 and 3 are based on Green River Shale and layer 2 is based on Barnes Sandstone. 

The third model set assumes that layer 1 is a factor of ten weaker than Green River Shale 

h,G h,G WG P1IG2 Pz/Gz p31G2 GN,/GNZ GN~/GNZ 

Model set I: bonded contacts 
Gx = 0.10 0.006 0.012 0.006 -0.009 -0.016 -0.009 0.502 0.502 
E,, = 0.16 0.004 0.001 0.004 -0.012 -0.018 -0.012 3.472 3.472 

Model set II: free-slip contacts 
Gx = 0.10 0.006 0.012 0.006 -0.009 -0.016 -0.009 0.502 0.502 
&X = 0.16 0.004 0.001 0.004 -0.012 -0.018 -0.012 3.472 3.472 

Model set III: bonded contacts, weak layer 1 
zxx = 0.10 0.0006 0.012 0.006 -0.0009 -0.016 -0.009 0.050 0.502 
E,, = 0.16 0.0004 0.001 0.004 -0.0012 -0.018 -0.012 0.347 3.472 

thicknesses having high fold amplification is larger than 
that for model set I at both E,, = 0.10 and E,, = 0.16, 
indicating that free-slip contacts between the layers 
enhance folding. Faulting is likely only with a thick 
(>0.7T) layer 3. In contrast to the models with bonded 
contacts, dominant wavelength at cXX = 0.16 with free- 
slip contacts (Fig. 5c) is not a continuously increasing 
function of T1 and T2; there is a region of dominant 
wavelengths < 2T for thicknesses of the three layers 
approximately equal. Thus, the presence of evenly 
spaced slip surfaces throughout the sequence reduces 
the dominant wavelength. The dominant wavelength 
reaches a maximum of 2.8Tfor large T,. Similarly to the 
models with bonded contacts, the maximum dominant 
wavelength with free-slip contacts increases with in- 
creasing strength contrast, reaching 3.2T, if h,lG,, 
h3/Gz, P,IG, and P3/G2 are reduced by a factor of 10 
and 6.7T if h,/Gz, h3/G2, P,IG2 and P31G2 are reduced 
by a factor of 100. 

Model set III has bonded contacts and the same 
material properties as model sets I and II, except that 
layer 1 is weaker (h,lG2 and P, /Gz reduced by a factor of 
10). At shortening strain FXX = 0.10, the fold amplifi- 
cation is high (>lOO) for large T, (T, > 0.34.4; Fig. 6a). 
Therefore, with a weak dCcollement layer, folding is 
favored by a thick dCcollement and develops with small 
amounts of shortening if the dCcollement layer is thick. 
At shortening strain E,, = 0.16, the amplification ratio is 
high for thick layers 1 and 2. The field of high fold 
amplification ratio on the ternary diagram is larger (Fig. 
6b) than that for model set I, indicating that a weak 
dCcollement layer enhances folding. The field of high 
amplification includes T3 < 0.8T and TI > O.O5T, which 
covers most combinations of relative layer thicknesses. 
The weaker dCcollement layer increases the dominant 
wavelength at E,, = 0.16 for all combinations of layer 
thicknesses (Fig. 6~). The dominant wavelength reaches 
a maximum of 3.9T for large T1 (0.80T,0.15T,O.O5T). 

DISCUSSION 

For a strong layer embedded in infinite media, fold 
amplification is low unless there is interlayer slip (John- 
son 1980). In the current models the top surface is stress- 

free and the bottom surface is a shear stress-free surface 
above a rigid basement, so that the models consist of a 
strong layer (layer 2) in finite media (layers 1 and 3). The 
shear stress-free surface below layer 1 acts as a slip 
surface, and the stress-free surface above layer 3 is 
equivalent to having an infinitely weak medium above it. 
Therefore, these surfaces that bound the finite media 
enhance fold amplification relative to infinite media. 
Even with low strength contrasts between the layers and 
with bonded layer interfaces, fold amplification is large 
for many combinations of relative layer thicknesses. If 
there are higher strength contrasts or free-slip contacts 
between the layers, folding is enhanced further. 

The relative layer thicknesses in fold belts, such as the 
Jura, central Appalachian Plateau and Parry Islands, 
and thrust belts, such as Idaho-Wyoming-Utah and 
southern Appalachians, are similar in some ways (Fig. 
7). In all of these deformed belts, the dCcollement layer 
is 5-10% of the total thickness. Because the middle and 
cover layers of the Jura and central Appalachian Plateau 
are difficult to differentiate, the sequences in these belts 
may act approximately as two-layer rather than three- 
layer sequences, and are plotted accordingly in Fig. 7. 
Because the models indicate that a thin cover layer 
enhances folding, a two-layer sequence may shorten as a 
fold belt, whereas a three-layer sequence with a thick 
cover may shorten as a thrust belt. However, the relative 
layer thicknesses of other folded and faulted terranes do 
not differ significantly; for example, the Parry Islands 
fold belt has similar relative layer thicknesses to those in 
the Tennessee and Idaho-Wyoming-Utah thrust belts. 
Thus, the determination of whether folding or faulting 
occurs may be based more on layer strengths than layer 
thicknesses. Fold amplification increases markedly with 
increasing strength contrast (compare Figs. 4 and 6). 
Carbonate rock instead of elastic rock as the strong layer 
may increase this strength contrast, if fracture is the 
dominant deformation mechanism and pressure solu- 
tion, dislocation creep and twinning are negligible. Salt 
instead of shale as the dCcollement layer also should 
increase the strength contrast and cause folding instead 
of faulting. The main difference between fold belts, such 
as the Jura, central Appalachian Plateau and Parry 
Islands, and thrust belts, such as the southern Appala- 
chians and Idaho-Wyoming-Utah, is that the d&olle- 
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Fig. 4. Ternary diagrams, on which the relative thicknesses of the 
three layers are plotted, for model set I with bonded contacts. 
Contours of (a) amplification ratio (A,IA,o + AbAb,)/2 at shortening 
strain rxx = 0.10, (b) amplification ratio at Fxx = 0.16 and (c) dominant 
wavelength (at E,, = 0.16) relative to total thickness T, where T = T, 

+ T2 + T3. 

ment layers in the fold belts contain salt. The presence of 
a salt decollement layer may be a determining factor in 
the development of a fold belt. 

With the material properties of Barnes Sandstone and 
Green River Shale, the elastic-plastic models indicate 
dominant wavelengths of <3T. Higher strength con- 
trasts between the layers result in larger dominant wave- 
lengths, up to 6.7T with free-slip contacts if the strength 
contrast is 100. The calculated dominant wavelengths of 
the models agree reasonably well with wavelengths of 
fold belts. Wavelengths range from 1.43.3T in the 
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0 >lOO 
& >l 

a 
T2 

Amplification Ratio 
Shortening Strain = 0.16 

n >lOO 

b 

Dominant Wavelength 
Shortening Strain = 0.16 

q >2T 
d >lT 

C 
Fig. 5. Ternary diagrams of model set II with free-slip contacts. 
Contours of (a) amplification ratio at r;, = 0.10, (b) amplification ratio 

at E,, = 0.16 and (c) dominant wavelength at E; = 0.16. 

Parry Islands fold belts (Harrison & Bally 1988), 1.2- 
2.OT in the Jura (Pierce 1966), and 2.1-7.8T in the 
central Appalachian Plateau (Wiltschko & Chapple 
1977), where Tis the total stratigraphic thickness. In the 
central Appalachian Plateau, large wavelengths corre- 
spond to a thick or weak (i.e. large percentage of salt) 
decollement layer (Wiltschko & Chapple 1977). This 
relationship is consistent with the models (Fig. 6c), in 
which dominant wavelength increases with a thicker or 
weaker decollement layer 1. If the spacing of thrust-fault 
ramps is determined by a folding instability, then the 
dominant wavelength may represent this ramp spacing 
in thrust belts (Goff 1990). Ramp spacing ranges from 
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Fig. 6. Ternary diagrams of model set III with bonded contacts and a 
weaker layer 1 @t/G2 and P,IGs are 0.1 times those of model set I). 
Contours of (a) amplification ratio at ZXz = 0.10, (b) amplification 

ratio at ZXX = 0.16 and (c) dominant wavelength at EXz = 0.16. 

3.4-8.2T in the Idaho-Wyoming-Utah thrust belt (Goff 
1990) and 5.7-13.4T in Tennessee (Woodward & Gray 
1985). According to the models, these large wavelengths 
require a large strength contrast (>lOO) between the 
strong layer and decollement and cover layers. A similar 
conclusion was reached by Goff (1990); a high viscosity 
contrast is required to explain the ramp spacing of the 
Idaho-Wyoming-Utah thrust belt. Therefore, high 
strength contrasts are apparently necessary for the long 
wavelengths relative to stratigraphic thickness in thrust 
belts, although, based on amplification ratios, high 
strength contrasts should favor folding over faulting. 

Appalachians _)o 

Party Islands -+” 

Idaho-Wyoming-Utah 

Fig. 7. Ternary diagram of the relative layer thicknesses of some fold 
and thrust belts. Because strong and cover layers for the Jura and 
central Appalachian Plateau are difficult to define, these belts are 

plotted at Ts = 0. 

CONCLUSIONS 

The influence of mechanical stratigraphy on folding 
and faulting of a three-layer sequence has been investi- 
gated. The models indicate that high strength contrasts, 
a weak decollement layer, a thin cover layer and free- 
slip contacts between the layers enhance folding over 
faulting. Belts of shortening that are dominated by 
folding commonly have a salt decollement layer, which 
results in a high strength contrast with the overlying 
rock, indicating that the presence of a salt decollement is 
a key factor in producing a fold belt. At low strain and 
with bonded contacts, fold amplification is greatest if the 
decollement layer is thick. At high strain (h << G), fold 
amplification is greatest for a relatively thick strong 
layer, because the strong layer reaches peak strength 
before the other layers and thus becomes weaker in 
shortening. With free-slip contacts, folding is most likely 
if slip surfaces are roughly equally distributed through- 
out the sequence. Dominant wavelengths generally in- 
crease with increasing thicknesses of the strong and 
decollement layers and with increasing strength con- 
trasts between the strong layer and the decollement and 
cover layers. The calculated dominant wavelengths are 
consistent with wavelengths in fold belts and ramp 
spacing in thrust belts, although they require a high 
strength contrast for thrust belts. 
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APPENDIX 

The derivation closely follows that of Johnson (1980). The stress- 
strain relationships, for the perturbing part of the deformation of a 
material subjected to mean stresses cX1 and iYZZ are: 

tiXX = GN(adax) + p, (Ala) 

erz = c,(ad32) + p, @lb) 

a,, =G(adax + adaz) + (P/2) (awlax - au/a+ (Ale) 

where u and w are the displacements in the x and z directions. 
respectively. G is the elastic shear modulus, h is the plastic hardening 
modulus, G,,, is the tangent modulus defined in equation 1. and 

c =(cX,, + a,#2 (A2a) 

P = o,, - ii,,. (A2b) 

Now, define a stream function @ such that 

U= aqlaz, (AW 

w = -ayiax. Wb) 

Substituting equations (Al) into the equilibrium equations and using 
equation (A3), 

where 

a4qlaz4 + 2Q(a4yllax2az2) + R(a4qdaX4) = 0, (A4) 

Q = (4G, - 2G)/(2G - P), (A5a) 

R = (2G + P)l(2G - P). (A5b) 

The sinusoidal solution to (A4) is 

r& == (llq{a’ exp [(a + /?‘)lz] + b’ exp [-(a + B’)lz] 

+c’ exp [(a - B’)lz] + d’ exp [-(a - /3’)lz]} cos (lx), (A6) 

where 

SG 18:4-E 
a = [(Q + R”*)/2]“*, (A7a) 

b’= [(Q - R”‘)/2]“*, 

I = 2,zlL, 

(A7b) 

(.47c) 

and L is the wavelength. If a and j3’ are imaginary, equation (A4) is 
hyperbolic, so that discontinuities are possible and faulting is predicted 
(Johnson 1980). If a is real and/J’ is imaginary, folding is possible if a 
perturbation amplifies significantly at some wavelength. Thus, accord- 
ing to this analysis, whether a is real or imaginary determines whether 
the material folds or faults. For -P << G, a is real if h is positive and 
imaginary if h is negative. Therefore, if the fold amplitude for some 
wavelength does not become large at a shortening strain less than that 
for which h + 0, faulting is interpreted to occur rather than folding. 
For a real and /J” imaginary. 

w = -aylax = {[a sin @XI) + b cos (j?lz)] exp (alz) 

+ [c sin (jlz) + d cos (plz)] 

X exp (-alz)} sin (Ix), (A8a) 

u = alylaz = {[(ab + ba) cos (/Uz) + (aa - bb) sin (/3lz)] exp (alz) 

+[(cp - da) cos (plz) - (co + dp) sin (plz)] 

X exp (-ok)} cos (Ix). (A8b) 

where 

$ = p = i[(R”” - Q)/z]“‘, (A9) 

Equations (A8) differ from the equations of Johnson (1980) because, 
in the present study, the media (the decollemcnt and cover layers) 
have finite thicknesses and may have differing material properties. 

In order to apply boundary conditions at the layer interfaces, it is 
necessary to introduce a local coordinate system in which the axes are 
normal and parallel to the interface. The stresses at the interfaces 
(Johnson 1979), to first order in the slope of the interfaces, are 

O,li = ir,, - P(adik + aw,iax), (AlOa) 

a?!, = I/-: + o;,, (AlOb) 

where n indicates the direction normal to the interface and s the 
direction parallel to the interface, w is the additional and w,, the initial 
vertical displacement of the interface, 

M’,, = A,, sin (lx). (All) 

Substituting equations (Al) and (A8) in (AlO), 

cr,,, = l(G - Pi2){{[(1 + Q)a - 2a/3b] sin v/z) 

+ [2apa + (1 + Q)b] cos u/z)} exp (alz) 

+ {[(I + Q)c + 2aBd] sin @lz) 

+ [-2upc + (1 + Q)d] cos (@z)} 

X exp (-crlz)} cos (lx) 

- PA,,Icos (lx). (A12a) 

o,,, = -; + l(G - P/2){ {p( I - RI’*) cos (&z) 

+ a(1 + RI’*) sin (j?/z)]a 

+ [u( 1 + RI’*) cos (/3/z) 

- b(l - RI’*) sin @/z)]b} exp (alz) 

+ {v(l - RI’*) cos (j?lz) 

- a( 1 + RI”) sin (plz)]c 

- [n(l + R”‘) cos (j/z) 

+ B( 1 - R”2) sin (Plz)]d} 

X exp (-crlz)} sin (lx). (A12b) 

For each jth layer. there are four constants. a,, b,. c, and d,, which are 
determined by the boundary conditions at the interfaces between the 
layers and at the top and bottom surfaces. The boundary conditions at 
the interface between layers j and j + 1 are, for a bonded interface, 

(%,), = (%s),+ I > 

(o,,), = (%),+, % 

u, = u,+i. 

(A13a) 

(A13b) 

(A13c) 
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w, = w,+1. 

For a free-slip (no shear stress) interface, 

(urn))) = O, 

(%Is)j+l = 0, 

(%I), = (%J,+l> 

w,= w,+,. 

The boundary conditions at the lower surface are 

t-v, = 0, 

(%)l = 0, 

(A13d) which simulates a free-slip detachment overlying a rigid basement. At 
the top surface, 

(A14a) (ollJ3 = 0, (A16a) 

(A14b) (%)s = 0, (A16b) 

(A14c) which represents a stress-free surface. Boundary conditions (A15) 

(A14d) require that b, = -d, and a, = ct. Using these results, the system is 
reduced to 10 equations in 10 unknown constants at, bl , a*, bZ, c2, 4, 
u3, b,, cj, 4. Once these constants have been determined, the 

(A15a) amplitude A can be calculated from equation (Asa), because 

(A15b) w=Asin(Ix). (A17) 


